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Highlights 38 

 A global dataset of over 300 million waveforms has been cross correlated. 39 

 The algorithms have been adapted to run as MapReduce jobs on a Hadoop 40 

cluster. 41 

 Increased parallelism was required to make best use of mappers. 42 

 IO was significantly increased but had little impact on performance. 43 

 A factor of 19 speedup was achieved relative to initial implementation. 44 

  45 



 3 

Abstract 46 

In seismology, waveform cross correlation has been used for years to produce high-47 

precision hypocenter locations and for sensitive detectors. Because correlated 48 

seismograms generally are found only at small hypocenter separation distances, 49 

correlation detectors have historically been reserved for spotlight purposes. 50 

However, many regions have been found to produce large numbers of correlated 51 

seismograms, and there is growing interest in building next-generation pipelines 52 

that employ correlation as a core part of their operation. In an effort to better 53 

understand the distribution and behavior of correlated seismic events, we have 54 

cross correlated a global dataset consisting of over 300 million seismograms. This 55 

was done using a conventional distributed cluster, and required 42 days. In 56 

anticipation of processing much larger datasets, we have re-architected the system 57 

to run as a series of MapReduce jobs on a Hadoop cluster. In doing so we achieved a 58 

factor of 19 performance increase on a test dataset. We found that fundamental 59 

algorithmic transformations were required to achieve the maximum performance 60 

increase. Whereas in the original IO-bound implementation, we went to great 61 

lengths to minimize IO, in the Hadoop implementation where IO is cheap, we were 62 

able to greatly increase the parallelism of our algorithms by performing a tiered 63 

series of very fine-grained (highly parallelizable) transformations on the data. Each 64 

of these MapReduce jobs required reading and writing large amounts of data. But, 65 

because IO is very fast, and because the fine-grained computations could be handled 66 

extremely quickly by the mappers, the net was a large performance gain. 67 

 68 
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1. Introduction 75 

It has long been recognized that in collections of seismic data recorded by the same 76 

instrument from sources in similar locations there will be many similar 77 

seismograms (e.g. Geller and Mueller, 1980, Poupinet et al, 1984). Geller and 78 

Mueller (1980) attributed the similarity to the fact that for small magnitude 79 

earthquakes, propagation results in an effective low-pass-filtering of the signals to 80 

become essentially the Green’s functions, so repeated ruptures of the same asperity 81 

produce the same seismogram.  82 

 83 

Since the initial observations of doublets, researchers have exploited the 84 

phenomenon in a variety of different ways. Much work has centered on producing 85 

high-precision relocations of clustered seismicity by correlating the waveforms to 86 

obtain high-precision relative picks used to relocate the events. For example 87 

Fremont and Malone (1987) and Got et al (1994) imaged structures underneath 88 

active volcanoes by relocation of multiplets.  Rubin et al (1999) imaged seismicity 89 

on creeping sections of the Hayward fault. Hauksson and Shearer (2005) relocated 90 

327,000 Southern California earthquakes using waveform cross correlation.  91 

 92 

Waveform correlation can also be used as the basis for highly sensitive detectors. 93 

This application has been known since at least the 1960’s (Anstey, 1966) and has 94 

been employed on numerous occasions since. Because the correlation “footprint” of 95 

high frequency signals is generally quite small, correlation detectors have been used 96 

almost exclusively as “spotlight” detectors aimed at small regions of interest. Harris 97 
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and Dodge (2011) used correlation in combination with subspace detectors (e.g. 98 

Harris, 2006) in an automated system to track events in an aftershock sequence.    99 

 100 

However, interest in using correlation to process events over broader regions has 101 

grown. For example Schaff and Richards (2004, 2011) discovered that about 13% of 102 

18,000 earthquakes recorded at regional distances in China were sufficiently well 103 

correlated that they could be detected and located using waveform correlation.  104 

 105 

To make better use of correlation relationships in seismic data analysis we need to 106 

understand what fraction of observed seismicity displays correlation relationships 107 

as functions of observed properties (e.g. source-receiver distance, window-length, 108 

bandwidth), and correlated source differences (e.g. location, depth, magnitude).  The 109 

longer-term goal is to understand the physics underlying observed correlation 110 

behavior in terms of source similarity and path effects.   111 

 112 

However, an impediment to our ability to investigate seismogram correlation is the 113 

computational costs of determining these relationships for the tens of thousands of 114 

seismic events each year observed at each of the tens of thousands of stations where 115 

data is available.  Without an extremely efficient way of performing these 116 

computations, it is simply too difficult and time consuming to perform the many 117 

correlation runs that may be required to achieve a deep understanding of the 118 

phenomena under study. 119 

 120 
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This paper presents a methodology to significantly improve the speed at which 121 

massive amounts of seismic event data can be processed to look for correlation 122 

behavior using a Hadoop architecture.  A result is to explore and expose the 123 

correlation behavior of large collections of seismic data. An expected outcome after 124 

analysis of these results is completed will be to make correlation a more useful tool 125 

in both geophysical research and seismic event cataloging operational systems. 126 

 127 

2. Applying correlation to next-generation seismic 128 

pipelines  129 

Organizations tasked with monitoring seismicity around the world (e.g. the United 130 

States Geological Survey National Earthquake Information Center, the 131 

Comprehensive nuclear-Test-Ban Treaty (CTBT) International Data Center, the US 132 

National Data Center, the International Seismological Center) and many in specific 133 

regions use a processing paradigm that was developed in the 1980’s when average 134 

computer processing power was a tiny fraction of what is commonly available now. 135 

A single pass is made over the waveform data to extract a compact set of parameters 136 

such as seismic phase arrival time, amplitude and period. These are input to a phase 137 

associator, and the associated phases are fed to a locator, which produces the 138 

hypocenter solution. Although numerous refinements have been added over time, 139 

the basic procedure is unchanged. 140 

 141 
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For a variety of purposes, from improving the monitoring of the CTBT, to better 142 

characterization of earthquake hazard, to natural resource extraction and reservoir 143 

monitoring, it is necessary to detect, locate, and identify seismic events down to 144 

very low magnitudes even in the presence of interfering signals. As we near the 145 

limits of what can be done using the approach discussed above, pattern-matching-146 

based processing looks increasingly attractive.  A correlation between a new signal 147 

and a reference one, with a sufficiently high statistic, is at once a detection, location, 148 

and identification, assuming those properties are known for the template. A 149 

correlation detection and identification can be made with as little as one channel, 150 

without needing an associator. Since correlation detectors are much more sensitive 151 

than the power detectors used in current systems, it is likely that the detection 152 

threshold could be pushed down in all regions for which correlators are available.  153 

 154 

Before considering the engineering aspects of a large-scale correlation-based 155 

seismic pipeline, it is crucial to understand how effective we can expect it to be. We 156 

need to know how much of the Earth’s seismicity is correlated and how it is 157 

distributed. It may be that an appropriate system could only usefully target specific 158 

regions, and therefore its scope should be limited accordingly.  159 

 160 

At Lawrence Livermore National Laboratory (LLNL) we operate a research database 161 

of seismic events and waveforms for nuclear explosion monitoring and other 162 

applications. The LLNL database contains several million events associated with 163 

more than 300 million waveforms at thousands of stations (Figure 1). We have 164 
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correlated the waveforms in this database as a first step towards understanding the 165 

global distribution of correlated seismicity and to begin construction of a library of 166 

pattern detectors that could be used in a template-based seismic processing 167 

pipeline. 168 

 169 
In this exploratory effort we correlate catalog events in a number of specific seismic 170 

phase windows (e.g. P, S) and the entire signal length, as well as in a number of 171 

frequency bands for each window. For each of the distinct station-channels for 172 

which we have waveforms, we find all events whose catalog locations are separated 173 

by 50 km or less and with average event-station separation <= 90°. For each pair we 174 

apply the processing illustrated in Figure 2.  In all ~6.8 billion windows are 175 

processed. 176 

A significant step in processing each window is identification of low SNR windows 177 

and artifacts. Low SNR is only a problem because it wastes CPU time, but corrupted 178 

and/or bad data (e.g. glitches, dropouts, severe clipping, no recorded signal, etc.) 179 

correlate quite well with each other and produce invalid results. 180 

To remove artifacts and low SNR seismograms we found it necessary to add a 181 

preprocessing step using a decision tree classifier quality control framework to 182 

automatically remove the problem signals from the correlation results.   183 

Our first full-scale attempt at this process was run on an architecture consisting of 4 184 

servers with 44 cores and 613 GB of RAM. All metadata and results were stored in 185 

an Oracle database, and the ~50 terabytes of waveform data were managed by a 2-186 
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head Hitachi file server. The time required to process the data was about 42 days. 187 

Over 370 million correlated waveform segments were found, and these results are 188 

still being analyzed. 189 

Because we anticipate repeating this processing with even larger datasets and with 190 

variations such as multi-channel correlations, we are interested in reducing the 191 

processing time significantly. However, a great amount of effort has already been 192 

spent optimizing the workflow for the current architecture, and we think only small 193 

improvements are possible. Therefore we decided to move the entire workflow to a 194 

MapReduce architecture, which is the subject of the rest of this paper. 195 

 196 

3. Hadoop Software Framework 197 

Apache Hadoop is an open source software framework for deploying data-intensive 198 

distributed applications.  It implements a computational paradigm called 199 

MapReduce and the Hadoop Distributed File System (HDFS) derived from Google’s 200 

MapReduce and Google File System (GFS) respectively (Dean and Ghemawat , 2004; 201 

Ghemawat, 2003) 202 

The primary motivation of the MapReduce programming model is to create 203 

independent tasks that operate on arbitrary partitions of the input dataset in 204 

parallel during the map phase. During the subsequent reduce phase, data that must 205 

be rejoined or summarized are shuffled together and processed.  When run over a 206 
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distributed file system such as HDFS with nodes connected to dedicated storage, this 207 

framework naturally leverages data locality, whereby tasks running on a particular 208 

node process data resident to that node.  By moving computation to the data, 209 

Hadoop allows exceedingly fast IO and compute performance for highly parallelized 210 

algorithms. 211 

Hadoop is written in Java, and thus writing MapReduce jobs in Hadoop most 212 

commonly involves writing explicit mappers and reducers in Java as well.  This 213 

deliberate approach to MapReduce programming can encourage the developer to 214 

attempt to find a simple mapping of the problem to a single mapper and a single 215 

reducer.  For many applications, including the waveform correlator, limiting the 216 

implementation to one MapReduce job means limiting parallelism where it could be 217 

of the greatest benefit.  Moreover, the standard Java approach requires significant 218 

boilerplate for each job and provides little guidance for chaining jobs into a 219 

workflow.  Consequently, we explored Pig (Natkovich, 2008) in an effort to find a 220 

higher-level tool for applying the MapReduce model.  221 

Apache Pig is a platform for creating MapReduce workflows with Hadoop.  These 222 

workflows are expressed as directed acyclic graphs (DAGs) of tasks that exist at a 223 

conceptually higher level than their implementations as series of MapReduce jobs.  224 

Pig Latin is the procedural language used for building these workflows, providing 225 

syntax similar to the declarative SQL commonly used for relational database 226 

systems.  In addition to standard SQL operations, Pig can be extended with user-227 

defined functions (UDFs) commonly written in Java.  We adopted Pig for our 228 
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implementation of the correlator to speed up development time, allow for ad hoc 229 

workflow changes, and to embrace the Hadoop community’s migration away from 230 

MapReduce towards more generalized DAG processing (Mayer, 2013).  Specifically, 231 

in the event that future versions of Hadoop are optimized to support paradigms 232 

other than MapReduce, Pig scripts could take advantage of these advances without 233 

recoding, whereas explicit Java MapReduce jobs would need to be rewritten. 234 

3.1 First Proof of Concept 235 

As part of a pilot project facilitated by Livermore Computing (LC), LLNL’s 236 

institutional high-performance computing group, an effort began to explore porting 237 

the waveform correlator to Hadoop.  LC’s development cluster consisted of 10 238 

Westmere nodes with 12 cores and 96 GB of RAM each.  Most importantly for the IO 239 

bound waveform correlator, each node also featured dedicated storage to promote 240 

data locality.  To compare the performance of the existing solution to Hadoop, a 1 241 

terabyte (TB) test dataset was derived from a seismically dense region of the 242 

western United States and copied into HDFS. 243 

Taking full advantage of the increased computational power and IO throughput of a 244 

Hadoop cluster requires significant parallelism of the application-level algorithms.  245 

Because every STA-CHAN in the original waveform correlator implementation was 246 

an independent task, and there were over 10,000 such tasks to perform, it would 247 

seem that the work was more than distributable enough to keep 10 hard-drives and 248 

120 compute cores busy.  In practice, however, there was significant imbalance in 249 
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the effort performed by each task, as illustrated by Figure 3, which shows the 250 

original implementation’s time to completion for each task on the 1 TB test dataset. 251 

As the histogram shows, most tasks in the original implementation executed in a 252 

matter of seconds.  For these tasks, IO is the natural bottleneck as they do very little 253 

beyond reading a waveform, rejecting it, and requesting the next candidate.  254 

However, a handful of STA-CHANs containing dense clusters of high-quality data 255 

required several hours to fully process, imposing clear computational constraints on 256 

the performance.  Any single job MapReduce implementation would be similarly 257 

constrained by these outliers, given that each mapper and reducer is run within its 258 

own single thread of execution.  In order to increase the parallelism of the Hadoop 259 

correlator, and consequently improve performance, the problem needed to be 260 

broken up into finer-grained sub-problems that could be more evenly distributed 261 

across the cluster topology. 262 

3.2 Overview of Pig Workflow 263 

The IO limitation of the original waveform correlator hardware lent itself to an 264 

architecture that attempted to minimize IO, going so far as to ensure that each 265 

waveform was read no more than once.  In contrast, the Hadoop implementation 266 

takes advantage of the improved IO throughput by trading reads and writes to gain 267 

increased parallelism.  As Figure 4 shows, the first proof of concept Hadoop 268 

implementation added many additional reads, writes, and transformations to the 269 

data that didn’t exist in the original implementation. Despite this increase in design 270 

complexity, IO, and computation, a dramatic increase in parallelism across each of 271 
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the steps allowed us to take full advantage of the cluster hardware.  This increased 272 

problem granularity meant reduced work done in the bottlenecks, and spread the 273 

most computationally intensive procedures over many more threads of execution.  A 274 

discussion of the major processing steps implemented in this pipeline follows. 275 

3.2.1 Join Metadata 276 

For the purpose of minimizing disk usage and promoting consistency, LLNL 277 

maintains a highly normalized relational database management system (RDBMS) for 278 

storing seismic STA-CHAN and waveform metadata.  This solution has worked well 279 

for our more typical interactive, single-workstation use cases, but creates an 280 

immediate bottleneck for highly parallel applications.  Specifically, any application 281 

spread across tens of nodes and hundreds of cores can quickly saturate both the 282 

database’s CPU and the bandwidth of the network interconnect.  Going against 283 

conventional RDBMS[D1] wisdom, it makes sense in an environment such as Hadoop 284 

to denormalize the dataset up front.  By doing so, the need to request data randomly 285 

is eliminated, and the dataset can easily be partitioned and sent to independent 286 

tasks for processing.  In contrast, a normalized solution would require each task to 287 

make requests for missing chunks of metadata, imposing a network limitation on 288 

the task. 289 

Pig provides a native “join” function for taking two structured datasets and 290 

denormalizing them by some join predicate.  Using Apache Sqoop, a command-line 291 

tool for transferring data between relational databases and Hadoop, we ingested all 292 

necessary Oracle tables into HDFS, and then used Pig to join the datasets into one 293 
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denormalized metadata[D2] table.  Fully denormalized, our metadata took just over 294 

50 GB of usable space on disk. 295 

We also joined the metadata to the binary waveform signal data directly by 296 

attaching a STA-CHAN-EVENT key onto the waveform data itself.  By defining a 297 

simple schema consisting only of two fields (the unique key and the binary 298 

waveform data), we were able to perform a similar join in Pig to create a fully 299 

denormalized table containing all the necessary data for a given waveform in a 300 

single row along with the trace itself. 301 

3.2.2 Get Candidates 302 

Having the dataset fully denormalized into rows of waveforms along with all 303 

relevant STA-CHAN and event metadata, we next approached the issue of cutting 304 

and filtering the waveforms into valid candidates for correlation.  This was in 305 

contrast to the original processing pipeline that took raw waveforms, checked for 306 

nearest neighbors, then cut and filtered the set of neighbors together.  In a scenario 307 

where IO is the primary performance consideration, it makes sense to avoid cutting 308 

and filtering as a preprocessing step, as it necessarily requires reading all raw 309 

waveforms once, then writing and reading back in all cut and filtered waveforms in 310 

a second pass.   311 

But, when IO is cheap, additional passes over the data to massage them into a more 312 

workable state can offer significant parallelization benefits.  Cutting and filtering a 313 

waveform is an independent operation, and can thus be parallelized more finely 314 

than the complete set of operations on a STA-CHAN.  For the 1 TB test dataset 315 
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consisting of nearly 10 million traces on about 10 thousand STA-CHANs, that 316 

represents a factor of 1,000 more tasks to be spread across the cluster.  Such smaller 317 

tasks are necessarily less variable in the amount of work to be done, and thus 318 

distribute the computational effort more evenly. 319 

Another benefit of performing the candidate generation task early in the processing 320 

is that it creates an opportunity to filter the input dataset down to something 321 

smaller and more manageable.  This may seem counter-intuitive considering that S 322 

waveforms cut into W windows and filtered into B bands yields as many as SWB 323 

candidates.  In practice, however, the majority of these preliminary candidates are 324 

discarded for having low signal-to-noise ratios or otherwise failing one of the 325 

decision tree classifiers used to assess the quality of the data.  For the 1 TB test 326 

dataset, only about ½ S, or 4.5 million candidates were output from the candidate 327 

generation task. 328 

3.2.3 Nearest Neighbors 329 

Left with only the cut and filtered waveforms that passed the initial quality control 330 

tests, the nearest neighbor calculation, too, can be parallelized beyond the STA-331 

CHAN granularity with fewer events per task.  This is because we only wish to 332 

correlate waveforms that are cut into the same window and filtered into the same 333 

band, and many of the events for a particular window and band were discarded in 334 

the previous step.  Thus we can have a separate task for every STA-CHAN-WINDOW-335 

BAND with only a fraction of the events to be processed per task. 336 
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An important implementation detail of the nearest neighbor calculation is that every 337 

task requires all of its event spatial data (latitude/longitude coordinates) to be in 338 

memory at once.  At this point in the processing, this event metadata is currently in 339 

a denormalized table with all the binary waveform data, which will certainly not all 340 

fit in memory at once for a given STA-CHAN-WINDOW-BAND.  Fortunately, Pig 341 

provides a mechanism to specify a subset of the fields (or columns, in relational 342 

database terms) to be sent to a given function.  To reconcile the fact that the spatial 343 

event data are small enough to fit in memory, but the waveform data are not, we 344 

calculate the nearest neighbors only once.   345 

The output from the nearest neighbor calculation will provide two additional pieces 346 

of metadata for each waveform: an “island” identifier and a step number.  An island 347 

of events is a connected component in graph terminology.  Given our criterion that a 348 

neighboring event is within 50 km, we can say that no two events in separate islands 349 

are[TA3] within 50 km of each other.  This is useful for the purpose of defining finer-350 

grained sub-problems, as individual STA-CHAN-WINDOW-BAND-ISLANDs can now 351 

be correlated entirely independently, in parallel.  However, even islands of events 352 

can be too large to fit entirely in memory, and so we need one additional piece of 353 

information to constrain the problem. 354 

As mentioned previously, we output a step number for each waveform, representing 355 

the order in which we traversed the waveform’s event within its island in the 356 

nearest neighbor calculation.  We traverse the events within a task by first drawing 357 

an event from the set at random.  We then use an R-Tree (Guttman, 1984) to fetch 358 
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all neighboring events within 50 km with logarithmic asymptotic time complexity, 359 

and add the neighboring events to a queue.  The events on the queue are the next to 360 

be processed in a similar manner, adding their previously unseen neighbors to the 361 

queue until no more neighbors exist, at which point we have discovered an island.  362 

Concretely, we say that for an island of N events, the waveform with step 1 363 

corresponds to the first event we draw at random to seed the island, and the 364 

waveform with step N corresponds to the last event drawn from the queue that has 365 

no previously unseen neighbors.  By processing events in a queue, instead of simply 366 

drawing them at random, we perform a breadth-first traversal of the island’s 367 

corresponding graphical representation.  This enables us to process neighboring 368 

events together, keeping them in memory while we process their neighbors, then 369 

discarding them as we migrate towards sections of the island farther away.  370 

Outputting the step value enables us to recreate this migratory processing without 371 

needing to keep all the spatial event information in memory during future 372 

processing tasks. 373 

With the island and step metadata generated, this information is then rejoined to 374 

the complete waveform dataset, and grouped together by STA-CHAN-WINDOW-375 

BAND-ISLAND using standard Pig functions. 376 

3.2.4 Correlate 377 

Every STA-CHAN-WINDOW-BAND-ISLAND can be processed independently.  First, 378 

all events within an island are ordered by ascending step number.  This ordered bag 379 

of waveform data is then fed to a user-defined function: CORRELATE.  This is a 380 
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special kind of user-defined function called an “accumulator” that processes 381 

elements within the ordered bag individually as opposed to loading them into 382 

memory at once.  In this way, the CORRELATE function is stateful, invoked with one 383 

waveform at a time, and outputting to a separate bag of correlations as neighboring 384 

events are fed in.  These correlations form the final output of the pipeline once 385 

flattened into a conventional comma-delimited text file with appropriate metadata 386 

attached.   387 

Before we accumulate our first waveform, we define an event queue we will add to 388 

in the same order as we accumulate events, and we set a variable “current” to define 389 

the waveform against which all incoming waveforms will be correlated until they 390 

are no longer neighboring events, at which point we can safely discard the current 391 

event.  This works because of the way we have ordered our events by step number, 392 

such that if an event follows another, either it is a neighbor or there are no more 393 

neighbors to process.  A formal proof of this claim, with accompanying pseudo-code 394 

of the CORRELATE algorithm, can be found in the Appendix. 395 

Once there are no more neighbors to process, we remove the next event from the 396 

queue and declare it to be the current event.  Necessarily, the incoming event must 397 

be a neighbor of the newly declared current event, or there are no unseen events for 398 

the current event.  This is shown by Lemma 1 (Appendix).  Once there are no more 399 

incoming events to accumulate, we drain the queue of its remaining events: 400 

correlating each newly removed event against all remaining events on the queue.  In 401 

practice, we again speed up the neighbor calculation with an R-Tree. 402 
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3.3 Performance Improvements and Bottlenecks 403 

Implementing the Map Reduce workflow described above and deploying it on the 404 

Hadoop test cluster yielded a significant performance improvement over the 405 

original implementation of the correlator.  However, certain bottlenecks in the 406 

processing pipeline remained.  As Figure 5 illustrates, processing time for 99% of 407 

the 1 TB test dataset went from nearly 28 hours on existing hardware to 45 minutes 408 

on Hadoop.  However, we observe that for the last 1% of the 1 TB test dataset the 409 

performance gap does not close as much between the two implementations: 30 410 

hours on existing hardware to over 6 hours on Hadoop. 411 

Our initial suspicion was that the loose connectivity constraint imposed on the 412 

islands was leading to sprawling, yet sparse, islands of events that could be broken 413 

up into smaller, and minimally overlapping components.  However, experimentation 414 

with algorithms including minimum graph cuts (Hao and Orlin, 1994) and the 415 

density-clustering DBSCAN (Ester et al., 1996) showed that our dataset contained a 416 

handful of large, highly dense islands of quality events.  This made the prospect of 417 

further refining the granularity of our tasks difficult, since a fully connected graph of 418 

events requires that every event be correlated against every other event. In other 419 

words, in places where seismicity concentrated there can be a very large number of 420 

events within 50 km of each other that require all possible pairs of correlations to 421 

be generated.   422 

In graph theory terms we can think of an island of neighboring events as a 423 

connected component of V vertices (events) and E edges (neighboring relations).  In 424 
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the CORRELATE process described above, we take time-domain waveform 425 

segments, and align them with their neighboring event segments before converting 426 

them into the frequency domain via a Fast Fourier Transform (FFT).  Once the event 427 

and all its neighbors are in the frequency domain, we correlate them to produce a 428 

correlation coefficient between 0 and 1.  Thus we must perform O(E) FFTs per STA-429 

CHAN-WINDOW-BAND-ISLAND task.  For the extremely dense outlier islands 430 

mentioned above,       , which implies that  ( )    (  ).  For our test dataset, 431 

the largest complete island consisted of about 10,000 events, and thus roughly 432 

100,000,000 FFTs confined to a single thread of execution.  Naturally, this led us to 433 

consider ways to do better. 434 

3.4 Refined Proof of Concept 435 

The goal we had in mind for improving the performance of CORRELATE was to 436 

reduce the  (  ) FFTs down to a more manageable  ( ).  An ideal solution would 437 

be to simply compute all FFTs once per event (vertex) and use the transformed, 438 

frequency domain segments in the CORRELATE step.  This solution would have the 439 

added benefit of being embarrassingly parallel, capable of being performed as a pre-440 

processing step with one task per waveform segment.  However, calculating the 441 

FFTs once per event requires additional information about all the events to be 442 

correlated that is missing a priori.  Before we can transform the segmented data into 443 

the frequency domain we need to know the minimum pre- and post-picked arrival 444 

times for which all segments to be correlated together have data.  Once this 445 

information is obtained for a given STA-CHAN-WINDOW-BAND-ISLAND, all the 446 
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segments can be trimmed down to the same length in seconds.  Without trimming 447 

the segments to the intersection of their lengths in this manner, we run the risk of 448 

producing separate power-of-two length output segments from the FFTs.  For the 449 

frequency-domain multiplication to work, the basis must of course be the same, and 450 

so the minimum pre- and post-pick times must be known prior to performing the 451 

FFT. 452 

 453 

Under the constraint that a given waveform could only be read from disk once, 454 

calculating island-wide pre- and post-pick times would be impossible without 455 

exhausting heap memory, so in our first implementation we opted instead for 456 

performing more FFTs in exchange for less IO.  However, that implementation 457 

revealed that reading and writing the entire dataset to HDFS could be performed on 458 

the order of seconds and minutes.  Consequently, our revised solution was simple: 459 

add two more passes over the data to the pipeline.   460 

 461 

The first new task would accumulate an entire STA-CHAN-WINDOW-BAND-ISLAND 462 

and calculate the pre- and post-pick times (GetBounds).  Those two pieces of 463 

additional metadata would then be appended onto the segment-level metadata, and 464 

all FFTs would be calculated (FourierTransform[D4]).  Each task would take a single 465 

waveform and produce exactly one transformed segment, allowing this step to be 466 

massively parallelized. This revised workflow is shown in Figure 6.  Figure 7 shows 467 

that adding the two additional passes over the data, in spite of the increased IO cost, 468 
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yielded a factor of 10 performance improvement in the CORRELATE routine. The 469 

added cost incurred by the highly dense outlier islands was greatly diminished.   470 

Both of the additional processing steps contributed negligibly to the overall runtime 471 

of the system (less than 15 minutes combined).  Most importantly, the CORRELATE 472 

runtime was reduced to under an hour of processing.  In aggregate, the refined 473 

Hadoop implementation yielded a factor of 19 improvement over the original 474 

waveform correlator, going from 48 hours on the 1 TB test dataset to under 3 hours 475 

in total[D5]. 476 

These performance gains include the time to read and write the data from and to 477 

HDFS, and were obtained in spite of the dramatic increase in total IO over the 478 

original implementation shown in Figure 8. 479 

4.0 Discussion 480 

The Hadoop model of distributing the data with the computations presents a 481 

paradigm shift for the data-intensive scientific computing community.  It 482 

demonstrates the need to change algorithmic priorities to fully take advantage of 483 

these powerful systems.  Instead of asking ourselves how we can decrease the IO 484 

burden, as we did in our original implementation of the waveform correlator, we 485 

now find ourselves asking how we can increase the parallelism of our algorithms.  486 

Whereas before we had lots of CPU which could not be fully utilized, now we have 487 

blazingly fast IO and imbalanced CPU load.  The process of finding new ways to 488 

break apart one’s algorithms into finer-grained sub-problems is at the heart of the 489 

Hadoop philosophy: scale out, not up. 490 
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Based on our 1TB test data set and the factor of 19 performance increase found by 491 

moving to the HADOOP architecture, we expect we will be able to re-correlate our 492 

entire ~50 TB, ~300 million waveform database in about 2 days instead of the 493 

original 42 days.  This will dramatically improve our ability to conduct research on 494 

massive seismic datasets, and we intend to describe those results in future papers.  495 

The lessons of this study, making use of HADOOP to increase parallelism instead of 496 

reducing IO, apply to many massive datasets of time series data, which are common 497 

in geophysics and other fields. 498 

 499 
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Figure Captions 575 

Figure 1 shows the waveform density (number of waveforms in database per cell 576 
divided by the total number of waveforms). Color is proportional to log(density) 577 
with black lowest and white highest. Note that although the data set has global 578 
coverage, the density is highest in the Middle East, Eurasia, and Western North 579 
America. 580 

Figure 2 is a schematic illustration of the processing applied to a single channel for a 581 
pair of events observed by a single station. For each of B bands the seismograms are 582 
filtered and cut into W phase windows. For each window pair, the cross correlation 583 
function is computed and the max and its associated shift are recorded in the 584 
database. 585 

Figure 3 shows the time to completion for each STA-CHAN task on the original 586 
architecture for the test dataset. Outlier tasks take several orders of magnitude 587 
longer to complete than average. 588 

Figure 4 shows the first proof of concept implementation of the waveform 589 
correlator as a Pig workflow consisting of many finely-grained passes over the data. 590 

Figure 5 is a comparison of processing times for the test dataset on the original 591 
architecture (left) and the first Hadoop implementation (right). Times are in 592 
seconds. 593 

Figure 6 shows the revised Hadoop processing flow with the added “Get Bounds” 594 
and “Fourier Transform” processing steps. 595 
 596 
Figure 7 shows the comparison of processing times for the test dataset on the 597 
original architecture (left) and the final Hadoop implementation (right). Times are 598 
in seconds. 599 

Figure 8 is a comparison of read/write times for the original implementation and 600 
the final Hadoop implementation. Times are in seconds. 601 

  602 
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Figures 603 

 604 

Figure 1 605 

 606 
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Figure 2 608 

  609 



 30 

 610 

 611 

Figure 3 612 



 31 

 613 

Figure 4 614 
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 624 

Figure 8 625 

 626 

 627 

  628 



 36 

Appendix 629 

The CORRELATE function, in pseudo code, works as follows: 630 

current = null 631 
queue = new Queue() 632 
 633 
CORRELATE(incoming): 634 
 if current == null: 635 
  current = incoming 636 
 else:  637 

queue.add(incoming) 638 
  if neighbors(current, incoming): 639 
   correlate(current, incoming) 640 
  else: 641 
   while not neighbors(current, incoming): 642 
    current = queue.dequeue() 643 
    for w in queue: 644 
     if neighbors(current, w): 645 
      correlate(current, w) 646 

 647 

Lemma 1: In the CORRELATE calculation, there is at all times a current event being 648 

correlated against all incoming events being removed from the queue.  If an 649 

incoming event is not the neighbor of the current event, then all of the current 650 

event’s neighbors have been correlated against the current event. 651 

Proof: In the NEAREST NEIGHBORS calculation, there is at all times a current event 652 

whose step number corresponds to the order it was removed from the queue in the 653 

breadth-first search.  All of the current event’s unseen neighbors are added to the 654 

queue together and assigned a step number greater than that of the current event. 655 

All previously unseen neighbors will be processed in a sequence together called the 656 

unseen sequence.   657 
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By induction on the current event in the CORRELATE calculation, we will show that 658 

CORRELATE has correlated all of the current event’s neighbors (the current 659 

candidates) by the time an incoming event is accumulated that is not a current 660 

candidate. 661 

In the base case, at step 1, we accumulate the first incoming event from the bag of 662 

island events ordered by step number and promote it to be the current event.  There 663 

are two possibilities: either the current event has an unseen sequence of current 664 

candidates to correlate, or it does not.  If there is no remaining unseen sequence to 665 

process, then our claim is correct by definition.  Thus we assume that the current 666 

event has an unseen sequence that needs to be processed.  If the next incoming 667 

event is not a current candidate, then it must be part of another event’s unseen 668 

sequence by definition of the connectivity of an island.  By definition of the current 669 

event, the incoming event must be part of the unseen sequence of an event with a 670 

higher step number than the current event.  But the current event’s unseen 671 

sequence must necessarily come before the unseen sequence of any subsequent 672 

events by definition of the step number, and so this is a contradiction.  Thus there 673 

are no more neighbors to correlate against the current event. 674 

Suppose the claim holds for current events up to step k-1.  At step k, we remove the 675 

kth event accumulated from the queue and promote it to be the current event.  We 676 

then proceed to correlate it against all the elements on the queue.  If the current 677 

event had any neighbors with a lower step number than itself, they were correlated 678 

earlier in the process by our assumption.  Thus the only current candidates 679 
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remaining must come from incoming events.  Without loss of generality, we can 680 

apply the same reasoning to incoming events as applied in the base case to 681 

demonstrate that all remaining neighbors must be part of the next incoming 682 

sequence, or there are none left to correlate against the current event, and so the 683 

CORRELATE algorithm does not miss any potential correlations. 684 


